справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Теория по алгебре >> Непрерывность функции.


Непрерывность функции.


В пунтке понятия о непрерывности функции вы познакомились с понятием непрерывности функции в точке. Если функция непрерывна в каждой точке некоторого промежутка I, то ее называют непрерывной на промежутке I (промежуток I называют промежутком непрерывности функции f). При переходе от одной точки этого промежутка к близкой ей точке значение функции меняется мало; график f на этом промежутке представляет собой непрерывную линию, о которой говорят, что ее можно «нарисовать, не отрывая карандаша от бумаги». (Так, во всяком случае, обстоит дело для непрерывных функций, изучаемых в школьном курсе.)

Как было показано в пункте правила вычисления производных, функция, дифференцируемая в точке x0, непрерывна в этой точке. Все дробно-рациональные и основные тригонометрические функции дифференцируемы во всех точках своих областей определения. Следовательно, эти функции и непрерывны в каждой из этих точек.

Например, из дифференцируемости функции f (х) = x2 на всей прямой, а функции f(x) = 1/x на промежутках (—∞;0) и (0;+∞) вытекает непрерывность этих функций на соответствующих промежутках.

Отметим следующее свойство непрерывных функций:

Если на интервале (а; b) функция f непрерывна и не обращается в нуль, то она на этом интервале сохраняет постоянный знак.

Это утверждение имеет наглядную интерпретацию. Допустим, что найдутся такие точки х1 и x2 интервала (а; b), что f{x1) <0, a f{x2)>0.

производная косинуса


Тогда непрерывная кривая (график функции f), соединяющая точки A(x1; f(x1)) и В (х2; f(х2 )), разделенные прямой у = 0, пересекает эту прямую в некоторой точке x3 данного интервала (см. рис.), т. е. f (х3)=0. (Представим себе, что точки А и В находятся на разных берегах реки, изображаемой интервалом (а; b). Ясно, что туристу, для того чтобы попасть из А в В, надо где-то перейти реку.) Это противоречит условию: функция f не обращается на интервале (а; b) в нуль.