|
|
Понятие о непрерывности функции.
Вернемся к задаче определения мгновенной скорости в точке (см формулу (1)). Функция
не определена при Δt= 0. Но для числа L = v0 — gt0 при уменьшении |Δt| разность vср(Δt) - L приближается к нулю. Именно поэтому мы писали vср(Δt) → v0 — gt0 при Δt→0.
Вообще говорят, что функция f стремится к числу L при х, стремящемся к x0, если разность f(x) - L сколь угодно мала, т. е. |f(x) – L| становится меньше любого фиксированного hɬ при уменьшении |Δх|, где Δх = х—x0. (Значение х=x0 не рассматривается, как и в задаче определения мгновенной скорости.)
Вместо х→ x0 можно, конечно, писать Δх→ 0.
Нахождение числа L по функции f называют предельным переходом. Вы будете иметь дело с предельными переходами в двух следующих основных случаях.
Первый случай — это предельный переход в разностном отношении Δf/Δx, т. е. нахождение производной. С этим пунктом мы познакопились в пункте производная.
Второй случай связан с понятием непрерывности функции. Если f(x) → f (х0) при х→ x0, то функцию называют непрерывной в точке х0. При этом f(x) - L = f (x) - f (х0) = Δхf; получаем, что |Δf| мало при малых |Δх|, т. е. малым изменениям аргумента в точке х0 соответствуют малые изменения значений функции. Все известные вам элементарные функции непрерывны в каждой точке своей области определения. Графики таких функций изображаются непрерывными кривыми на каждом промежутке, целиком входящем в область определения. На этом и основан способ построения графиков «по точкам», которым вы все время пользуетесь. Но при этом, строго говоря, надо предварительно выяснить, действительно ли рассматриваемая функция непрерывна. В простейших случаях такое исследование проводят на основании определения
|
| |
|