справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Теория по алгебре >> Основные правила дифференцирования. Сумма.


Основные правила дифференцирования. Сумма.


      Выведем несколько правил вычисления производных, В этом пункте значения функций u и v и их производных в точке х0 обозначаются для краткости так: u(х0) = u, v(х0) = v, u'(х0) = u', v'(х0)=v`. Если функции u и v дифференцируемы в точке х0, то их сумма дифференцируема в этой точке и
(u+v)' = u' + v'.


      Коротко говорят: производная суммы равна сумме производных.

      1) Для доказательства вычислим сначала приращение суммы функций в рассматриваемой точке: Δ(u+v) = u (х0+Δx)+ v(х0+Δx) – (u(х0)+v(х0)) = (u(х0+Δx)-u(х0)) + (v(х0+Δx)-v(х0)) = Δu + Δv

      2)
правила дифференцирования 1


      3) Функции u и v дифференцируемы в точке х0, т. е. при Δх→0

правила дифференцирования 2


      Тогда

правила дифференцирования 3


при Δх→0 (см. правило 3, а) предельного перехода), т. е. (u+v)' = u'+v’

      Лемма. Если функция f дифференцируема в точке х0, то она непрерывна в этой точке: Δf→0 при Δx→0, т. е.

f(х0 + Δх)→f (х0) при Δx→0
.

      Действительно,

приращение функции


при Δх→0, так как

производная функции


      Итак, Δf→0 при Δx→0, т. е. для дифференцируемых функций f (х0 + Δx)→f (х0) при Δх→0.