справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Теория по алгебре >> Тригонометрическое неравенство tg(t)≤a.


Тригонометрическое неравенство tg(t)≤a.


Рассмотрим способ решения тригонометрического неравенства с тангенсом на примере неравенства tg(t)≤1.

период тангенса равен π Найдем сначала все решения данного неравенства, принадлежащие промежутку (-π/2; π/2), а затем воспользуемся периодичностью тангенса. Для выделения всех точек Pt правой полуокружности, значения t которых удовлетворяют данному неравенству, обратимся к линии тангенсов. Если t является решением неравенства, то ордината точки T - луч AT (см. рисунок ниже). Множество точек Pt, соответствующих точкам этого луча, - дуга l, выделенная на рисунке жирным. Следует отметить, что точка Pt1 принадлежит рассматриваемому множеству, а Pt2 нет.

Найдем условие, при котором точка Pt принадлежит дуге l. t1 принадлежит интервалу (-π/2 ; π/2), и tf(t)=1, следовательно t1=arctg(1)=π/4. Значит t должно удовлетворять условию -π/2<t≤π/4. Все решения данного неравенства, принадлежащие промежутку (-π/2 ; π/2), таковы: (-π/2 ; π/4].

учитывая периодичность тангенса, приходим к окончательному ответу:

-π/2+πn<t≤π/4+πn, n - целое.

тригонометрическое неравенство с тангенсом