|
Теорема о трех перпендикулярах
|
|
Теорема о трех перпендикулярах
Теорема.
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной.
Доказательство.
Пусть AB – перпендикуляр к плоскости α, AC – наклонная и с – прямая в плоскости α, проходящая через основание С наклонной. Проведем прямую CA` параллельную прямой AB. Она перпендикулярна плоскости α. Проведем через прямые AB и A`C плоскость β. Прямая с перпендикулярна прямой CA`. Если она перпендикулярна прямой CB, то она перпендикулярна плоскости α, а значит, и прямой AC.
|
| |
|