|
|
Свойство ромба.
Теорема (свойства ромба).
Диагонали ромба пересекаются под прямым углом. Диагонали ромба являются биссектрисами его углов.
Доказательство.
Пусть ABCD – данный ромб. Диагонали ромба пересекаются в точке O.
По свойству параллелограмма AO = OC, значит BO – медиана Δ ABC. А так как треугольник ABC - равнобедренный, то по свойствам медианы равнобедренного треугольника проведенной к основанию, BO является также высотой и биссектрисой. Значит прямая BO ⊥ AC и ∠ ABO = ∠ CBO. Теорема доказана.
|
| |
|