|
Скалярное произведение. Свойство
|
|
Скалярное произведение. Свойство
Теорема
Скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними.
Доказательство.
Пусть a и b – данные векторы и φ – угол между ними. Имеем:
или
Скалярное произведение ab таким образом, выражается через длины векторов a, b и a + b т. е. систему координат можно выбрать любую, а величина скалярного произведения не изменится. Выберем систему координат xy так, чтобы начало координат совпало с началом вектора a, а сам вектор лежал на положительной полуоси оси Ox. Тогда координатами вектора a будут числа |a| и 0, а координатами вектора a – |a| cos φ и |a| sin φ . По определению
Теорема доказана.
Из теоремы следует, что
если векторы перпендикулярны, то их скалярное произведение равно нулю.
|
| |
|