|
|
Равенство векторов
Два вектора называются равными, если они совмещаются параллельным переносом.
Т.е. существует такой параллельный перенос, при котором начало и конец одного вектора совмещается с началом и концом другого вектора соответственно.
Теорема
Если векторы одинаково направлены и равны по абсолютной величине, то они равны.
Доказательство.
Пусть AB и CD – одинаково направленные векторы, равные по абсолютной величине. Параллельный перенос, переводящий точку A` в точку A, совмещает луч A`B` с лучом AB, потому что они сонаправлены. Отрезка AB и A`B` равны, поэтому точка B совмещается с точкой B`. Значит, параллельный перенос переводит вектор A`B` в вектор AB. Значит векторы равны. Теорема доказана.
|
| |
|