справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Признак параллельности прямых в пространстве


Признак параллельности прямых в пространстве


Теорема

Две прямые , параллельные третьей прямой, параллельны.

Параллельные прямые

Доказательство

Пусть прямые b и с параллельны прямой a. Нужно доказать, что прямые b и с параллельны.
Случай, когда прямые a, b, с лежат в одной плоскости рассмотрен а разделе параллельные прямые.
Пусть прямые не лежат в одной плоскости и β - плоскость, в которой лежат прямые a и b, а γ - плоскость, в которой лежат прямые a и с. Плоскости β и γ различны. Отметим на прямой b какую-нибудь точку B и проведем плоскость γ1 через прямую с и точку B. Она пересечет плоскость β по прямой b1.
Прямой b1 не пересекает плоскость γ. Действительно, точка пересечения должна принадлежать прямой a, так как прямая b1 лежит в плоскости β. С другой стороны, она должна лежать и на прямой с, так как прямая b1 лежит в плоскости γ1. Но прямые a и с как параллельные не пересекаются.
Так как прямая b1 лежит в плоскости β и не пересекает прямую a, то она параллельна a, а значит, совпадает с b по аксиоме параллельных. Значит, прямая b, совпадая с прямой b1, лежит в одной плоскости с прямой с (в плоскости γ1) и не пересекает ее и прямые b и с параллельны. Теорема доказана.