|
Признак подобия треугольников по двум углам
|
|
Признак подобия треугольников по двум углам
Теорема
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Доказательство.
Пусть у треугольников ABC и A1B1C1 ∠ CAB = ∠ C1A1B1, ∠ ABC = ∠ A1B1C1. Докажем, что Δ ABC подобен Δ A1B1C1.
Пусть k = AB/A1B1. Подвергнем Δ A1B1C1 гомотетии с коэффициентом k. Получится некоторый Δ A2B2C2.
Δ A2B2C2 = Δ ABC по второму признаку равенства треугольников (∠ C2A2B2 = ∠ C1A1B1 = ∠ CAB, ∠ A2B2C2 = ∠ A1B1C1 = ∠ ABC так как преобразование подобия сохраняет углы, A2B2 = k*A1B1 = AB, по условию).
Треугольники A1B1C1 и A2B2C2 гомотетичны, следовательно подобны. Δ A2B2C2 = Δ ABC, следовательно подобны тоже, а значит треугольники A1B1C1 и ABC подобны. Теорема доказана.
|
| |
|