справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Теория по алгебре >> Периодические функции.


Периодические функции.


Очень многие процессы в окружающем нас мире имеют повторяющийся характер. Например, раз в год повторяется взаимное расположение Земли и Солнца. С течением времени повторяются день и ночь, приливы и отливы. Положение маятника в моменты времени, отличающиеся на период колебаний маятника, одинаковы.

Процессы такого рода называют периодическими. Фунции, которые описывают эти процессы, так же называют периодическими.

Известные нам тригонометрические функции являются периодическами. Для любого числа x и любого целого числа k выполнчется sin(x+2πk)=sin(x), следовательно 2πk; k - целове число, - период функции синуса.

В общем случае говоря о периодичести функции f полагают, что имеется такое число T≠0, что область определения D(f) вместе с каждой точкой x содержит и точки, получающиеся из точки x параллельным переносом вдоль оси OX (вправо и влево) на расстояние T. Функцию f называют периодической с периодом T≠0, если для любого x из области определения значения этой функции в точках x; x-T; x+T равны, то есть f(x-T) = f(x) = f(x+T).

Поскольку синус и косинус определены на всей числовой прямой, а так же sin(x+2π) = sin(x); cos(x+2π)=cos(x) для любого x, синус и косинус - периодические функции с периодом 2π. Тангенс и котангенс - периодические фугкции с периодом π. В самом деле, области определения этих функций вместе с каждым x содержит числа x+π и x-π и верны равенства tg(x+π) = tg(x), ctg(x+π)= ctg(x).

Если фугкция f периодическая с периодом T, то при любом целом n≠0, число nT так же является периодом этой функции. Например, пусть n=3. Воспользуемся опредедением периодической функции: f(x+3T) = f((x+2T)+T) = f(x+2T) = f((x+T)+T) = f(x+T) = f(x).