|
|
Пересечение двух сфер
Теорема
Линия пересечения двух сфер есть окружность.
Доказательство
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2. Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения. Следовательно, пересечение сфер есть окружность. Теорема доказана
|
| |
|