справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Основы геометрии. прямая и точка.


Прямая и точка


Основными геометрическими фигурами на плоскости являются точка и прямая.
Точки обозначаются прописными латинскими буквами: A, B, C,... .
Прямые обозначаются строчными латинскими буквами a, b, c,... .


пряиая и точка

Прямая бесконечна. На рисунке изображается только ее часть, но мы представляем ее себе неограниченно продолженной в обе стороны.

Аксиома 1
Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Аксиома 2 Через любые две точки можно провести прямую, и только одну.

параллельные прямые, пересекающиеся прямые

Если две прямые имеют общую точку, то говорят что они пересекаются.
Если две прямые не имеют общих точек, то говорят что они не пересекаются.


Прямая a пресекает прямую b в точке A. A – точка пересечения прямых a и b.

точка пересечения прямых

Точки A и B принадлежат прямой a. Тоска С не принадлежит прямой a.
Соответственно точки С и B принадлежат прямой b. Тоска A не принадлежит прямой b.
Так же говорят точки A и B лежат на прямой a, а точка С не лежит.


принадлежность точек прямым

Прямую можно обозначить двумя точками лежащими на ней. Прямую с можно обозначить AB.