справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Теория по алгебре >> Касательная к графику функции.


Касательная к графику функции.


С понятием касательной к графику функции вы уже знакомы. График дифференцируемой в точке х0 функции f вблизи х0 практически не отличается от отрезка касательной, а значит, он близок к отрезку секущей l, проходящей через точки (х0; f (х0)) и (х0+Δx; f (x0 + Δx)). Любая из таких секущих проходит через точку А (х0; f (х0)) графика (рис. 1). Для того чтобы однозначно задать прямую, проходящую через данную точку A, достаточно указать ее угловой коэффициент. Угловой коэффициент Δy/Δx секущей при Δх→0 стремится к числу f ‘(x0) (его мы примем за угловой коэффициент касательной) Говорят, что касательная есть предельное положение секущей при Δх→0.

дифференцирование


Если же f’(х0) не существует, то касательная либо не существует (как у функции у = |x| в точке (0; 0), см. рис. ), либо вертикальна (как у графика функции в точке (0; 0), рис.2).

Итак, существование производной функции f в точке хо эквивалентно существованию (невертикальной) касательной в точке (х0, f (х0)) графика, при этом угловой коэффициент касательной равен f' (х0). В этом состоитгеометрический смысл производной

дифференцирование


Касательная к графику дифференцируемой в точке xо функции f — это прямая, проходящая через точку (x0; f (x0)) и имеющая угловой коэффициент f ‘(х0).

Проведем касательные к графику функции f в точках x1, х2, х3 (рис. 3) и отметим углы, которые они образуют с осью абсцисс. (Это угол, отсчитываемый в положительном направлении от положительного направления оси до прямой.) Мы видим, что угол α1 острый, угол α3 тупой, а угол α2 равен нулю, так как прямая l параллельна оси Ох. Тангенс острого угла положителен, тупого — отрицателен, tg 0 = 0. Поэтому

f'(x1)>0, f’(x2)=0, f’(x3)<0.


Построение касательных в отдельных точках позволяет более точно строить эскизы графиков. Так, например, для построения эскиза графика функции синус предварительно находим, что в точках 0; π/2 и π производная синуса равна 1; 0 и -1 соответственно. Построим прямые, проходящие через точки (0; 0), (π/2,1) и (π, 0) с угловыми коэффициентами 1, 0 и -1 соответственно (рис. 4) Остается вписать в полученную трапецию, образованную этими прямыми и прямой Ох, график синуса так, чтобы при х, равном 0, π/2 и π, он касался соответствующих прямых.

Отметим, что график синуса в окрестности нуля практически не отличим от прямой у = х. Пусть, например, масштабы по осям выбраны так, что единице соответствует отрезок в 1см. Имеем sin 0,5 ≈ 0,479425, т. е. |sin 0,5 — 0,5| ≈ 0,02, и в выбранном масштабе это соответствует отрезку длиной 0,2 мм. Поэтому график функции y = sin x в интервале ( -0,5; 0,5) будет отклоняться (в вертикальном направлении) от прямой у = х не более чем на 0,2 мм, что примерно соответствует толщине проводимой линии.